Two interacting cylinders in cross flow.
نویسندگان
چکیده
Cylindrical structures in a group are frequently seen on land and in the ocean. Mutual flow interaction between the structures makes the wake very excited or tranquil depending on the spacing between the structures. The excited wake-enhancing forces in some cases cause a catastrophic failure of the structures. This paper presents results of an experimental investigation of Strouhal number (St), time-mean, and fluctuating forces on, and flow structures around, two identical circular cylinders at stagger angle α = 0°-180° and gap-spacing ratio T/D=0.1-5, where T is the gap width between the cylinders, and D is the diameter of a cylinder. While forces were measured using a load cell, St was from spectral analysis of fluctuating pressures measured on the side surfaces of the cylinders. A flow visualization test was conducted to observe flow structures around the cylinders. Based on forces, St, and flow structures, 19 distinct flow categories in the ranges of α and T/D investigated are observed, including one quadristable flow, three kinds of tristable flows, and four kinds of bistable flows. The quadristable, tristable, and bistable flows ensue from instabilities of the gap flow, shear layers, vortices, separation bubbles, and wakes, engendering a strong jump or drop in forces and St of the cylinders. The two cylinders interact with each other in six different mechanisms, namely interaction between boundary layer and cylinder, shear layer or wake and cylinder, shear layer and shear layer, vortex and cylinder, vortex and shear layer, and vortex and vortex. While the interaction between vortex and cylinder results in a very high fluctuating drag, that between vortex and shear layer results in a high fluctuating lift. On the other hand, the interaction between shear layer or wake and cylinder weakens mean and fluctuating forces and flow unsteadiness. A mutual discussion of forces, St, and flow structures is presented in this paper.
منابع مشابه
Pressure Calculation in the Flow Between Two Rotating Eccentric Cylinders at High Renolds Numbers
This paper reports the result of an analytical investigation of a steady, incompressible and viscous flow between two eccentric, rotating cylinders at high Reynolds number. A one dimensional case is far from reality because the gap between the cylinders is very small. Further, when their axes are displaced by a small distance, usually caused by bearing loads, two dimensional effects become obvi...
متن کاملA Computational Approach to the Flow of Walter’s Liquid B′ through Annulus of Coaxial Porous Circular Cylinders for High Suction Parameter (RESEARCH NOTE)
The present investigation studies the behavior of steady flow of visco-elastic liquid between two porous coaxial circular cylinders, where both the cylinders are rotating with different uniform angular velocities about the common axis. In addition, the inner cylinder has uniform velocity along the axis and the visco-elastic fluid, which is a Walters liquid B′, is allowed to flow in the annulus....
متن کاملMagnetohydrodynamic Flow in Horizontal Concentric Cylinders
This article presents the exact solutions of the velocity and temperature fields for a steady fully developed magnetohydrodynamic flow of a viscous incompressible and electrically conducting fluid between two horizontal concentric cylinders. Our study focuses on the influence of the Hartmann number, Brinkman number, Péclet number and inner radius on the fluid temperature field, entropy generati...
متن کاملComputation of Flow Behind Three Side-by-Side Cylinders of Unequal/Equal Spacing
This paper aims to simulate unstable gap flows of three side-by-side cylinders unequally/equally spaced at T1/d = 1.5 and T2/d = 1.6 in a uniform cross flow (Re=300). The simulation is carried out using ANSYS Flotran 7.0. A mesh-independent study is conducted on a single cylinder at Re=100. The Strouhal number and wake flow characteristics compare well with experimental results. Simulation of t...
متن کاملEntropy generation analysis of non-newtonian fluid in rotational flow
The entropy generation analysis of non-Newtonian fluid in rotational flow between two concentric cylinders is examined when the outer cylinder is fixed and the inner cylinder is revolved with a constant angular speed. The viscosity of non-Newtonian fluid is considered at the same time interdependent on temperature and shear rate. The Nahme law and Carreau equation are used to modeling dependenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 84 5 Pt 2 شماره
صفحات -
تاریخ انتشار 2011